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This proposal addresses the problem of effective inference in the presence of like-minded

others. While the literature on learning in games has made substantial progress in intro-

ducing various learning algorithms, these tend to suffer from a few widespread issues that

limit their applicability. Foremost among these is the failure of incentive compatibility: if

a learning algorithm is collectively adopted, it will not be individually optimal. I describe

two approaches to overcome this failure. The first imposes an equilibrium condition on the

adoption of learning algorithms themselves. The second reduces competition in the full space

of learning algorithms to competition in computing power.

1 The Interactive Learning Problem

Consider the inference problem faced by high-frequency trading (HFT) algorithms. The

trader relies on algorithms that can function well under the high frequency regime in which

today’s financial exchanges typically operate – well beyond human reaction speeds and per-

ceptive capacity. The algorithm must achieve the standard single-agent learning objective

of effective inference about the world around it, conditional on its own behavior. Because

other trading algorithms that are both acting and learning in its presence, the inference may

be highly non-stationary. The algorithm potentially knows nothing about the number of

agents operating in its midst, let alone their incentives. The algorithm will find it difficult

to disentangle fundamental from social dynamics, and must treat them jointly.

This is one case of a more general problem, learning in the context of game theory. Agents

learn about other agents through their behavior, and in some cases, may act to influence

said learning (i.e. strategic teaching). Strategies are thought of as an optimal repeated game

strategy under a subjective prior belief distribution (Kalai and Lehrer 1993). The learning
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algorithm is fully embedded in the prior belief; that is, the choice of one’s default prior

corresponds to the choice of how to learn1.

As Shoham et al. (2007) observe, this problem has been of interest at least since the advent

of game theory itself (see Brown (1951) on fictitious learning). In economics, the literature

has been framed largely as a justification for particular equilibrium concepts, so that learning

is proposed as a process that leads toward said equilibrium. This literature is surveyed

in Fudenberg and Levine (1998) and Young (2004), extending beyond Nash equilibrium

to support correlated equilibrium (Foster and Vohra 1997) and self-confirming equilibrium

(Fudenberg and Levine 1993) as the outcome of learning. Many of the algorithms developed

capture relatively simple dynamics, sufficient for their purpose but requiring the user to adopt

stationarity assumptions that do not apply to the environment in which they are situated.

In computer science, beyond providing a computational method for finding equilibria, the

literature has been used as a basis for multi-agent learning. The guarantee of equilibrium

convergence is a desirable feature for learning outcomes, in that it satisfies stability and the

(admittedly weak) notion of unilateral optimality. Indeed, learning algorithms such as Nash

Q-learning (J. Hu and Wellman 2003) and Hidden Markovian Play (Chen et al. 2015) have

been developed expressly for this purpose.

The example of HFT highlights some prominent features that require implementation

before these algorithms can be operationalized effectively. Some are well-addressed within

the existing literature; others are only partially-addressed or entirely ignored. Of course,

any persisting lapses will become more prominent as artificial intelligence (AI) becomes

more widespread (therefore, more likely to interact with other AIs) and more relied upon

(therefore, required to solve problems that even humans have trouble with – consider the

prominent role that anthropomorphism has played in human history).

2 The Desiderata

These features can be divided into those pertaining to the information that algorithms have

access to, and those pertaining to the optimality conditions that should be achieved.

Information I: Semi-coupledness. For an algorithm to be uncoupled in a class of games,

it must apply to every possible specification of the opponents’ preferences. This assumption,

widely adopted in the learning literature, is useful in that any algorithm satisfying it will

function without any information about others’ preferences beyond their representability. It

is certainly necessary, in the HFT example, to allow for a wide range of opponent preferences.

1In practice, of course, most learning algorithms are not explicitly stated in terms of a prior belief.
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However, while this assumption is valid in spirit, it may be excessively strict in practice.

There are myriad situations in which additional, credible information may be brought to bear,

including structural restrictions on preferences and/or the presence of underlying cognitive

limitations. Indeed, it has been conjectured that some of the strict impossibility results on

the existence of learning algorithms (Foster and Young 2001; Hart and Mas-Colell 2003))

rely on the unreasonable strength of the uncoupledness assumption.

Information II: Environmental agnosticism. Often, learning algorithms must not only

function well regardless of the number of intelligent/unintelligent opponents, but also they

must do so without knowing in advance the number and intelligence of said opponents. The

importance of this is immediate in the HFT example, although it is worth noting that in

many designed markets, the presence of intelligent opponents may be easily trackable. Dekel

et al. (2004) considers the difficulty of learning when nature’s strategy is unknown. Foster

and Young (2006) consider radical uncoupledness in learning algorithms, a condition which

requires that (like uncoupledness) one’s algorithm not depend on opponent’s preferences

and (unlike uncoupledness) one’s algorithm not depend on opponent’s actions. This has the

advantage of ensuring environmental agnosticism, but Foster and Young (2006) only prove

equilibrium convergence in finite two-player games. Fortunately, as the discussion in section

3 on aggregated actions will suggest, there are weaker sufficient conditions.

Optimality I: Incentive compatibility. The crucial new feature to consider here is in-

centive compatibility: if all opponents adopt the given learning algorithm, is it optimal to

adopt it in response? In HFT, traders have overriding incentives to use the best algorithm

available in their environment, without regard for its convergence properties or social inef-

ficiencies. Deviations from existent learning algorithms usually take the form of strategic

teaching, wherein agents adjust their behavior to misguide their opponents. This incentive

is explored theoretically in Schipper (2015), Israeli (1999), Duersch et al. (2012) and ob-

served experimentally in Hyndman et al. (2012) and Chong et al. (2006). The insuffiency

of traditional approaches to learning is highlighted in particular by Schipper (2015), who

demonstrates how the assumption that uncoupled learning converge to Nash equilibrium

necessarily contradicts incentive compatibility. Finally, note that there differing degrees of

incentive compatibility: some market designers may be able to restrict agents to a particular

class of strategies, in which case only incentive compatible revelation is required.

Optimality II: Pareto optimality. Beyond unilateral optimality, we may seek learning

algorithms that embody some notion of social efficiency. This is not guaranteed: consider the
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flash crash of 2010, which involved a brief but substantial loss of value on several financial

exchanges and was driven by naive responses of HFT algorithms. However, there is reason to

be optimistic. Most existing learning algorithms converge to one-shot Nash equilibrium (by

design), but it is unclear why one-shot Nash equilibrium should be the standard. While it is

necessary that rational learning converge to a Nash equilibrium, the equilibria of relevance

are those of the repeated game (Kalai and Lehrer 1993). Consider the repeated prisoner’s

dilemma: one might expect rational agents to avoid a poor outcome by convincing one

another that they deeply care for the other’s well-being. Generally, one would hope to

design algorithms that converge to some pareto optimal outcome of the repeated game.

To summarize, we seek an incentive-compatible, environmentally-agnostic, semi-coupled,

pareto optimal learning algorithm. Satisfying these features would be the crucial neces-

sary step towards employing inference that is robust to the presence of intellectually-similar

agents. The importance of such developments to the broader field of AI is clear, but there

are two particular applications to economics worth highlighting. The first considers statis-

tical inference about variables of economic relevance, as undertaken within the private and

public sectors. When this information is used to inform economically-relevant decisions,

we encounter an interactive learning problem. It may be worthwhile to consider whether

particular estimation techniques can predict effectively when their usage is widespread.

The second application, as exemplified by HFT, is market design. Here, learning algo-

rithms act as surrogates on behalf of human market participants. This is a form of market

design with minimal underlying assumptions on preferences and game structure, which fur-

thermore does not require the designer to compute a constrained optimum (a task that

spawned an entire subfield). By commiting agents to behavior in an incentive-compatible

way, an appropriate class of learning algorithms could guarantee reasonably good results in a

variety of markets – markets that humans currently participate in directly, possibly at great

expense and subject to humanity’s biological limitations.

The remainder of this proposal will discuss two directions in which this research can

proceed, one which we regard as more obvious, more ambitious, but less promising. To aid

the discussion, we define our context more formally.

3 Formalizing the Problem

For now, the setting of interest will be a collection ΓR of repeated games with imperfect

monitoring. A learning algorithm (as defined in this section) will have to satisfy optimality

criteria (as proposed in sections 4 and 5) for any realized game γR ∈ ΓR. In particular, the
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algorithm makes no reference to the likelihood with which a particular game is realized2.

Instead, ΓR should be thought of as the domain over which our hypothetical learning algo-

rithm is well-functioning. The collection is generally not the set of all games, and may be

subject to whatever restrictions that the designer sees fit.

• Let there be a set Ω of states, endowed with some topology.

• Let Γ be some collection of normal-form games.

– Let I be the collection of agent sets associated with some γ ∈ Γ.

– Let A be the collection of action profile sets associated with some γ ∈ Γ.

• Let τ : A → Ω prescribe the state associated with any given action profile.

• Let ui : Ω→ R prescribe agent i’s utility as a function of the realized state.

– The utility function for a given game is ui◦τ ; that is, agent i’s utility as a function

of the action profile.

From a given γ ∈ Γ with agent set I and action profile set A, construct a discrete infinitely

repeated game γR.

• Define a strategy for agent i as

si :
∞⋃
t=0

(
t∏

`=0

Ai ×
t∏

`=0

Ω

)
→ Ai

Accordingly, each agent observes only the state history and their own actions. Note

that the structure of a strategy is identical across all repeated games ΓR.

• Define i’s utility vδi : S → R from strategy profile s as the time-discounted sum of stage

game utilities for some discount factor δ ∈ (0, 1). This may be expressed recursively

as:

vδi (s) = ui ◦ τ ◦ s∅ + δvδi (s(s
∅
i , τ ◦ s∅, ·))

where s∅ := s(∅) is the initial action profile associated with s.

2Should it be known a priori that games are realized according to some probability distribution µ, the
appropriate collection of games would be a singleton, consisting of the incomplete information game with a
common prior µ over the game structure. There is another variation, in which agents have prior beliefs µi that
they would like to see incorporated into the learning algorithm. We might regard this as a retracted learning
problem that includes the selection of µi given some available information. If (µi, µ−i) are “credible”, then
they should be consistent with a learning algorithm in the retracted learning problem.

5



• Define a learning algorithm as a function f that takes in preferences ui : Ω → R
and puts out a strategy si of the repeated game. For example, we could think of

f∞ as embodying some subjective prior belief over histories, and define f(ui) as the

ui-optimal play under Bayesian updating.

• For a given game γR, define a strategy profile s where si = f∞(ui) for all i ∈ I. Later

on, we will refer to action and state histories. Construct these sequences by defining

asi0 = s∅i , ω
s
0 = τ(s∅) and

asit = si(a
s
0, . . . , a

s
t−1, ω

s
0, . . . , ω

s
t−1)

ωst = τ ◦ s(as0, . . . , ast−1, ωs0, . . . , ωst−1)

In the presence of mixed strategies, these sequences will be stochastic.

This completes the notation for this proposal. The remaining sections will discuss optimal-

ity conditions (primarily, incentive compatibility). Before proceeding, however, we should

consider how this framework interacts with our two informational desiderata.

• Semi-coupledness. For player i, the learning algorithm f and the strategies it returns

depend only on the state history, i’s action history, and i’s preferences. There is

no direct reference to opponents’ preferences. By varying the set of games Γ and

(through τ) the information that states convey about opponent actions, we can adjust

the strength of the semi-coupledness assumption. For example, a typical uncoupled

learning algorithm would (a) set Γ to be the space of all n-player normal-form games

with action profiles A =
∏n

j=1Aj and (b) set Ω = A−j so that opponents’ actions are

fully observed. One plausible weakening would use Γ′ as the space of games, where Γ′

is the set of γ ∈ Γ where every player j satisfies ui continuous over Ω.

• Enviromental-agnosticism. Suppose that we could aggregate opponent’s per-period

actions in such a way that preferences depended only on the aggregate. This aggregate

action would be observed by the learning algorithm as a state ω ∈ Ω, along with the

individual’s present action. If we let S denote the set of all conceivable aggregated

behavior (under any desired preference restrictions), then we might hope for a rich-

enough set I ′ of two-player agent sets where for any behavior in S is mimicked by

some agent j in an appropriate two-player game. Here, effective learning in the given

game would be equivalent to effective learning in the two player game against j, and

we could expand I to include agent sets of arbitrary cardinality and composition.
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In this environment, environmental agnosticism is achieved. But the environment

(which may be necessary as well as sufficient) is certainly restrictive. It forces the

learning algorithm f to perform well in a larger space of possible games (those corre-

sponding to agent sets I ′). It also forces f to be flexible enough to exhibit the full

range of conceivable aggregate phenomena. These two requirements are complemen-

tary in their restrictiveness: a larger space of relevant games will induce a larger range

of conceivable phenomena, and more phenomena will require a richer collection I ′.

4 The First Approach: Learning Equilibrium

The first approach is to pursue an equilibrium of learning algorithms, a profile of learning

algorithms where some notion of incentive compatibility holds for all agents. This may be

thought of as an equilibrium in the one-shot game where learning methods (or equivalently,

subjective priors) are chosen. More formally, one possible formulation of our objective is

as follows. As discussed in the previous section, the following conditions must hold for any

γ ∈ Γ (and every i ∈ I).

• Convergence. The limits asi∞ = limt→∞ a
s
it and ωs∞ = limt→∞ ω

s
t exist3. If ωs∞ has

a non-singleton support, then agent i is indifferent between the states realized with

positive probability.

• No-average-regret. The convergent state ωs∞ is payoff-optimal in the set of feasible

states for agent i given opponent strategies s−i. Recall that, by the previous bullet,

ui (ω
s
∞) is deterministic. As such4,

ui (ω
s
∞) = max

s′i

E

 lim
T→∞

∑T
t=0 ui

(
ω
(s′i,s−i)
t

)
T


This embodies two desiderata. First, agent i will act optimally at the convergent state.

Second, agent i will optimally manipulate others to achieve its desired convergent state.

Consider an ideal learning algorithm f∞ such that si = f∞(ui) satisfies these two properties,

evaluated under ui, when s−i = f∞(u−i). We will seek a sequence of learning algorithms fk

such that as k →∞, fk will approximate the aformentioned properties of f∞.

3It is possible that this notion of convergence is too restrictive, in that it rules out convergence to repeated
game equilibria with non-stationary outcomes. It will be kept, however, until proven untenable.

4Of course, no-average-regret is not always an appropriate formalization of incentive compatibility. Under
frequent entry/exit of participating agents, the convergent state may never be reached or may be reached
only for a short time. Situations where initial losses preclude future wins (e.g. the agent defaults) would be
problematic if our setting were not restricted to repeated games (instead of dynamic games).
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It is informative to illustrate this incentive compatibility condition in the abstract. Sup-

pose that f∞ operates on a collection Γ of two-player games, where Γ is symmetric in the

sense that the row player has the same set of possible preferences as the column player. Let

a, b, h be functions where a, b represent strategies such that a = f∞(u1), b = f∞(u2) and h1

represents the payoff evaluation (i.e. no-average regret) as applied to a particular game. We

require

a = arg max
∀c

h1(c, b)

This must hold for a variety of functions b. Let F denote the set of all possible opponent

strategies under learning algorithm f∞. We can write these equations more concisely as

a = arg max
∀c

h1(c,F) (1)

If we replace references to f∞ with references to fk and rewrite equation 1 accordingly, then

we would require that equation 1 be met with arbitrarily small error as k →∞.

While learning equilibrium captures incentive compatibility in the most direct way, it

is not clear whether equilibrium learning algorithms are likely to exist. There are several

reasons to be concerned.

1. First, a learning algorithm is a complex object, a mapping from functions to other

(also complex) functions. These are far more complex, for instance, than the map-

pings from/into Euclidean space that typically comprise the strategy space of Bayesian

games, a type of game for which proving equilibrium existence is also difficult.

2. Second, it is not obvious how an equilibrium learning algorithm should deal with

conflicting interests. On one hand, a useful algorithm will have to account for a variety

of games and therefore be flexible in its responses. However, given such flexibility, we

have an analog to the Schipper (2015) argument: an opponent can always mimic some

other type in order to shift the convergent outcome in their favor. Moreover, insofar as

accurate prediction is equivalent to optimal behavior, the impossibility result of Foster

and Young (2001) suggests that there exist games (in particular, zero-sum games) for

which learning equilibrium may never be satisfied.

3. Third, even if f∞ exists, there may not exist a sequence fk that approximates learning

equilibrium for high k. This is prohibitive when the index k captures a computational

limitation that cannot be bypassed, such as a finite memory.

Despite these difficulties, notions of learning equilibrium have arisen within the computer

science literature on learning in games, with due consideration of the existence problem.
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Shoham et al. (2007) discuss learning equilibrium as one of five agendas for multi-agent

learning research, and Monderer and Tennenholtz (2007) elaborate with a fuller exposition

of progress in that area. Brafman and Tennenholtz (2004) prove existence in repeated games

where opponent preferences are observed and demonstrate that existence is not guaranteed

in an uncoupled setting. Brafman and Tennenholtz (2006) prove existence in symmetric

games. Ashlagi et al. (2006b) prove existence in an auction setting where only winning bids

are observed. In addition, some work has attempted to construct learning equilibrium under

weaker unilateral optimality conditions, such as minimax strategies (Hyafil and Boutilier

2004) and safety level equilibrium (Ashlagi et al. 2006a).

It is likely that any non-existence of learning equilibrium is exacerbated by a particular

modelling assumption: the absence of computational costs. In the presence of heterogeneous

computing costs among agents, one might expect each agent to resign itself to being manip-

ulated by their cognitive superiors who can afford higher-intensity algorithms. It is unclear,

however, to what extent the particular specification of computational cost (as well as the

payoffs of the agents) will affect the equilibrium learning algorithm.

5 The Second Approach: Learning curb

The second approach takes a lesson from the discussion of computational costs. It attempts to

translate competition in the learning strategy space into linear competition in the computing

power brought to bear on a specified algorithm. To do this, rather than consider learning

equilibrium, we attempt to describe an appropriate curb set: a set that is “closed under

rational behavior”. (The term was defined by Basu and Weibull (1991) as a set of strategy

profiles that includes all of its own best replies. Lacking a better term, for the purposes of

this proposal we redefine a curb as a set of strategy profile that includes at least one best

reply to each of its consituents.) The nature of this curb set is very particular. We index

strategies by some k that represents sophistication, and require that, given that opponents

use a given algorithm at some level of sophistication k−i, we can get arbitrarily close to a

best response by using the same algorithm at a sufficiently high ki.

This curb set is not a learning equilibrium in itself, and may not include the learning

equilibrium even if it exists. Why, then, is the emphasis learning curb warranted at all?

After all, it does not resolve the indeterminacy problem, where agents are either forced

into suboptimal algorithms or constantly increasing their own sophistication in response to

corresponding increases by their opponents. To see the value in restricting learning to a

self-consistent subset, note that the indeterminacy problem arises only when there is some

conflicting interest between participating agents. Consider that our social interest in the
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outcomes of games of conflict is often quite limited. In the example of HFT, regulators

are not concerned about which particular bank captures the surplus in a given transaction.

Instead, they are concerned with how uncontrolled competition in these areas of conflict

might spill over to destabilize the market in areas of common interest. The primary goal of a

learning algorithm designer should be to ensure that, where common incentives do exist, they

are attained. Restricting the frame of competition will not resolve unresolvable conflicts, but

it may permit stronger efficiency guarantees everywhere else.

To formalize our notion of learning curb, recall the optimal learning algorithm f∞ of the

previous section. As before, consider a sequence of learning algorithms fk that we intuit

as approximating f∞. Previously, fk were intended to satisfy the following condition: if

all agents adopt fk, then as k → ∞, the convergence and no-average-regret conditions for

all players are realized. Now, fk is constructed as follows: when all other agents −i adopt

fk−i for some finite k−i, as ki → ∞ the no-average-regret condition for player i is realized.

Further, as ki, k−i →∞, the convergence condition is realized.

I will illustrate the incentive compatibility condition of f 1, f 2, ..., f∞ under the same

conditions as in the previous section. Here, let F denote the set of all possible opponent

strategies under learning algorithms f 1, f 2, ..., f∞. Let Fi denote agent i’s possible strategies,

namely {f 1(ui), f
2(ui), ..., f

∞(ui)}. Let b, h be functions where b represents a strategy such

that b ∈ F for some k and h1 represents the payoff evaluation (i.e. no-average regret) as

applied to a particular game. We require

∃a ∈ Fi such that a = arg max
∀c

h1(c, b)

This must hold for a variety of functions b. If we assume that there is always a unique

optimal strategy, we have

F1 ⊇ arg max
∀c

h1(c,F) (2)

While the set F differs from that of section 4, it is still instructive to compare equations 1

and 2. The former requires a single function to be optimal across a larger set of functions.

The latter only requires the optimum to fall within a specified set, a set which can also

include functions that are never optimal.

6 Implementation

For any given restriction on preferences, there may be several learning algorithms f, g with

that satisfy equations 1 and/or 2. It may be possible to approach the construction of a

learning algorithm by first specifying a set of F behaviors that we wish to capture, and then
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asking which is the smallest superset G ⊇ F that corresponds to an incentive compatible

learning algorithm (under some restrictions on {hi}∀i). For example, if we wish to capture all

behavior that is linear in the history, is it enough to require that the learning algorithm deal

well with linear behavior? Or does it also have to work for, say, all polynomial behavior?

Indeed, there are practical reasons to focus from the beginning on a particular class F
of behavior. There are a number of function classes for which effective statistical prediction

tools already exist. If the nature of the learning algorithm and opponent preferences are such

that we can guarantee behavior that is linear, or polynomial of degree d, or continuous in

recent history, then we can respectively apply ordinary least squares, polynomial estimators,

and Taylor approximations to learn with no-average-regret. The relevant question is whether

our optimal behavior after applying those estimators will fall into the original class F .

This question is somewhat evocative, and the reasoning resembles a fixed point argument.

That intuition can be formalized. Recall equation 1, repeated below for convenience.

a = arg max
∀c

h1(c,F)

This is stated for agent 1, but given any agent i there must exist ai satisfying this equation

under hi. If we let H be the set of all possible hi, then we have the following necessary

condition for incentive compatibility.

F = arg max
∀c
H(c,F) (3)

This representation suggests that finding an incentive compatible learning algorithm requires

solving something analogous to a functional equation, except where the solution is a set of

functions rather than a single function. Viewed differently, it is a fixed point of a transfor-

mation on sets; namely, the transformation arg max∀cH(c, ·).
There are at least two more properties that may be sought in F . The first is the condition

described in section 3, which allows aggregation of multiple players into a single opponent.

The second is that belief formation as a function of history is somehow related to one’s

optimal response as a function of beliefs. For example, beliefs and optimal responses might

both be assumed linear in their respective arguments; this would allow for a more sensible

interpretation of the requirement that F consist of linear functions.

Finally, there is the question of how to implement the approximation index. On the one

hand, it could prescribe how much information is used, such as only recording the last k

periods of history (Hurkens 1995; Powers and Shoham 2005) or only evaluating payoffs up

to k periods in the future. On the other hand, the approximation index could prescribe a

(limited) level of sophistication at which other agents are assumed to operate. This could
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either be explicitly rooted in bounded rationality models (Lipman 1991; Camerer et al. 2004;

T.-W. Hu 2014), or be stated directly in terms of observed behavior, like assuming opponent’s

strategies are polynomials (in recent history) of order k. Of course, there is no reason to

rule out combinations, where both the information used and the complexity of inference is

increasing in k. Indeed, that may be the best approach, in that it allows the designer to

approximate rather than solve the various facets of this difficult problem.

References

Ashlagi, I., Monderer, D., & Tennenholtz, M. (2006a). Resource selection games with un-

known number of players. In Proceedings of the fifth international joint conference on

autonomous agents and multiagent systems (pp. 819–825). AAMAS ’06. Hakodate,

Japan: ACM.

Ashlagi, I., Monderer, D., & Tennenholtz, M. (2006b). Robust learning equilibrium. In Pro-

ceedings of the 22nd conference on uncertainty in artificial intelligence. UAI ’06. Ar-

lington, Virginia, United States: AUAI Press.

Basu, K. & Weibull, J. W. (1991). Strategy subsets closed under rational behavior. Economics

Letters, 36 (2), 141–146.

Brafman, R. I. & Tennenholtz, M. (2004). Efficient learning equilibrium. Artificial Intelli-

gence, 159 (1), 27–47.

Brafman, R. I. & Tennenholtz, M. (2006). Optimal efficient learning equilibrium: imperfect

monitoring in symmetric games. In Proceedings of the 21st national conference on

artificial intelligence. AAAI-06.

Brown, G. W. (1951). Iterative solution of games by fictitious play. In T. C. Koopmans (Ed.),

Activity analysis of production and allocation (Chap. 24, pp. 374–376). John Wiley &

Sons, Inc.

Camerer, C. F., Ho, T.-H., & Chong, J.-K. (2004). A cognitive hierarchy model of games.

The Quarterly Journal of Economics, 119 (3), 861–898.

Chen, W., Chen, Y., & Levine, D. K. (2015). A unifying learning framework for building

artificial game-playing agents. Annals of Mathematics and Artificial Intelligence, 73 (3),

335–358.

Chong, J.-K., Camerer, C. F., & Ho, T. H. (2006). A learning-based model of repeated games

with incomplete information. Games and Economic Behavior, 55 (2), 340–371.

Dekel, E., Fudenberg, D., & Levine, D. K. (2004). Learning to play bayesian games. Games

and Economic Behavior, 46 (2), 282–303.

12



Duersch, P., Oechssler, J., & Schipper, B. C. (2012). Unbeatable imitation. Games and

Economic Behavior, 76 (1), 88–96.

Foster, D. P. & Vohra, R. V. (1997). Calibrated learning and correlated equilibrium. Games

and Economic Behavior, 21 (1), 40–55.

Foster, D. P. & Young, H. P. (2001). On the impossibility of predicting the behavior of

rational agents. Proceedings of the National Academy of Sciences, 98 (22), 12848–12853.

Foster, D. P. & Young, H. P. (2006). Regret testing: learning to play nash equilibrium without

knowing you have an opponent. Theoretical Economics, 1 (3), 341–367.

Fudenberg, D. & Levine, D. K. (1993). Self-confirming equilibrium. Econometrica, 61 (3),

523–545.

Fudenberg, D. & Levine, D. K. (1998, December). The Theory of Learning in Games. MIT

Press Books. The MIT Press.

Hart, S. & Mas-Colell, A. (2003). Uncoupled dynamics do not lead to nash equilibrium. The

American Economic Review, 93 (5), 1830–1836.

Hu, J. & Wellman, M. P. (2003). Nash q-learning for general-sum stochastic games. Journal

of Machine Learning Research, 4, 1039–1069.

Hu, T.-W. (2014). Unpredictability of complex (pure) strategies. Games and Economic Be-

havior, 88, 1–15.

Hurkens, S. (1995). Learning by forgetful players. Games and Economic Behavior, 11 (2),

304–329.

Hyafil, N. & Boutilier, C. (2004). Regret minimizing equilibria and mechanisms for games

with strict type uncertainty. In Proceedings of the 20th conference on uncertainty in

artificial intelligence (pp. 268–277). UAI ’04. Banff, Canada: AUAI Press.

Hyndman, K., Ozbay, E. Y., Schotter, A., & Ehrblatt, W. Z. (2012). Convergence: an ex-

perimental study of teaching and learning in repeated games. Journal of the European

Economic Association, 10 (3), 573–604.

Israeli, E. (1999). Sowing doubt optimally in two-person repeated games. Games and Eco-

nomic Behavior, 28 (2), 203–216.

Kalai, E. & Lehrer, E. (1993). Rational learning leads to nash equilibrium. Econometrica,

61 (5), 1019–1045.

Lipman, B. L. (1991). How to decide how to decide how to...: modeling limited rationality.

Econometrica, 59 (4), 1105–1125.

Monderer, D. & Tennenholtz, M. (2007). Learning equilibrium as a generalization of learning

to optimize. Artificial Intelligence, 171 (7), 448–452.

13



Powers, R. & Shoham, Y. (2005). Learning against opponents with bounded memory. In

Proceedings of the 19th international joint conference on artificial intelligence (pp. 817–

822). IJCAI’05. Edinburgh, Scotland: Morgan Kaufmann Publishers Inc.

Schipper, B. C. (2015, April). Strategic teaching and learning in games.

Shoham, Y., Powers, R., & Grenager, T. (2007). If multi-agent learning is the answer, what

is the question? Artificial Intelligence, 171 (7), 365–377.

Young, H. P. (2004, December). Strategic Learning and its Limits. OUP Catalogue. Oxford

University Press.

14


	The Interactive Learning Problem
	The Desiderata
	Formalizing the Problem
	The First Approach: Learning Equilibrium
	The Second Approach: Learning curb
	Implementation

